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Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular 
division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence 
by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be 
categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthen-
ing of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been 
developed to inhibit telomerase activation in 85–95% of cancers, including the use of antisense oligonucleotides such as 
small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, 
immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex struc-
tures, and gene therapy approaches. Conversely, in the remaining 5–15% of human cancers that rely on ALT, mechanisms 
involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding 
RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased 
interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister 
chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has 
emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal 
clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of 
the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements 
in TMM-based cancer therapies.
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Introduction

Telomeres are nucleoprotein complexes located at the ter-
minal sections of chromosomal arms. They primarily safe-
guard the terminal regions of telomeric DNA against the 
cellular DNA repair mechanisms (Shay and Wright 2019; 
Cohen and Bryan 2022). In each cell cycle of somatic cells, 
the DNA sequences of chromosomal termini are attrited. 
After a limited number of divisions, this phenomenon causes 
the cells to enter the replicative senescence and finally die 
(Victorelli and Passos 2017). In all proliferating normal 
cells, telomere length is gradually diminished, attributed to 
factors such as oxidative stress, exonucleolytic trimming, 
and other cellular processes, alongside the inherent insuffi-
ciency of lagging strand DNA replication. Cancer cells have 
adopted mechanisms for preventing telomere shortening. 
Hence, therapeutic strategies have been developed against 
telomere maintenance of malignancies (Xu and Goldkorn 
2016).

Mammalian telomeres are characterized by a conserved 
hexameric tandem repeat sequence denoted as (TTAGGG)ₙ. 
This sequence is organized into a configuration that resem-
bles a lariat, referred to as a T-loop and is associated with 
a complex of six different proteins (Phan 2010). As shown 
in Fig. 1, the looped configuration begins with nucleolytic 
processes at the ends of telomeric DNA. The process cul-
minates in forming an elongated single-stranded overhang 
characterized by a high concentration of guanine bases. This 

overhang then undergoes a folding process, resulting in the 
establishment of a T-loop, which subsequently invades the 
double-helical configuration of the telomeric DNA, thereby 
facilitating the creation of a displacement loop, commonly 
referred to as a D-loop (Webb, Wu et al. 2013; Tomáška, 
Cesare et al. 2020). The Shelterin complex, comprising six 
distinct proteins, is closely associated with telomeric DNA. 
This assembly is crucial for properly functioning and main-
taining chromosome ends in mammalian cells, playing a 
vital role in safeguarding the integrity of telomeric regions 
(Zinder, Olinares et al. 2022; Hu, Yan et al. 2024). The sin-
gle-stranded TTAGGG sequence-binding protein, known as 
protection of telomeres 1 (POT1), functions in conjunction 
with the double-stranded TTAGGG sequence-binding telo-
meric repeat-binding factors 1 and 2 (TRF1/2 or TERF1/2) 
(Glousker, Briod et al. 2020; Kallingal, Krzemieniecki et al. 
2024). This collaboration is further enhanced by the involve-
ment of three additional proteins. These include a subunit of 
the shelterin complex that also acts as a telomerase recruit-
ment factor, known as the adrenocortical dysplasia homolog 
protein (ACD, which is also referred to as TPP1, PIP1, and 
PTOP), the TERF1 interacting nuclear factor 2 (TINF2, also 
known as TIN2), and the TERF2 interacting protein (TER-
F2IP, also called RAP1). Together, these proteins are assem-
bled at the telomere through their interactions with TRF1 
and TRF2, thereby playing a crucial role in the maintenance 
and protection of telomeres (Nandakumar and Cech 2013; 
Smith, Pendlebury et al. 2020; Lim and Cech 2021; Zhang, 

Fig. 1  Schematic presentation of telomeres and the main components of telomerase
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Hou et al. 2023). A comprehensive overview of these six 
members of the shelterin complex and their characteristics 
is provided in Table 1.

It is proposed that telomeric sequences act as a protec-
tive buffer, preventing the loss of critical genetic infor-
mation (Jenner, Peska et al. 2022). The primary role of 
telomeres is to safeguard the terminal regions of chromo-
somes. This protective function is achieved through two 
distinct mechanisms. Firstly, telomeres serve as protec-
tors against inappropriate DNA repair processes, thereby 
shielding chromosomes from irregular recombination and 
fusion occurrences. Secondly, they inhibit the degradation 
of genes located near the chromosome ends, a process that 
could arise from incomplete DNA replication (Martínez 
and Blasco 2011; Trybek, Kowalik et al. 2020; Cohen and 
Bryan 2022). Notwithstanding this protective mechanism, 
a gradual reduction in telomere length is commonly noted. 
The critical limit of telomere length is linked to its grad-
ual reduction throughout the process of DNA replication. 
This reduction hinders the shelterin complex proteins from 
adequately associating with the telomeric DNA sequences, 
resulting in an inability to perform their protective function 
at the termini of chromosomes. In the majority of differenti-
ated somatic cells, there is an intrinsic decrease of roughly 
30–150 base pairs in telomere length with each cellular 
division, along with changes in their spatial structure, ulti-
mately leading to a diminished ability to establish protective 
T loops (Lulkiewicz, Bajsert et al. 2020). The steady short-
ening of telomere length eventually attains a threshold that 
activates multiple signaling pathways, initiating the process 
of cellular senescence. This process results in the halting 
of cell division, signifying that the cell is approaching its 
maximum replicative potential, a concept referred to as the 
Hayflick limit. This limit is a fundamental protective mech-
anism against tumorigenesis (Shay 2016; Niveta, Kumar 
et al. 2022). To bypass this state of replicative senescence 
and maintain telomere length within viable limits, two main 
approaches are utilized in cancer cells: the enzymatic func-
tion of telomerase and the alternative lengthening of telo-
meres (ALT), a process that is supported by homologous 
recombination (HR) (Maciejowski and de Lange 2017). 
Telomerase activation is detected in 85–95% of human can-
cers, while ALT recombination mechanisms occur in 5–15% 
of cases (Claude and Decottignies 2020). Recent studies 
have suggested that dual telomere maintenance mechanisms 
(TMMs) can coexist within the same cellular structures. It 
has been argued, however, that this co-occurrence might be 
attributed to the experimental methodologies used, rather 
than being a fundamental trait commonly seen in cellular 
processes (De Vitis, Berardinelli et al. 2018). In this review, 
we will focus on the mechanisms underlying telomerase 
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modifications. These alterations encompass gene amplifica-
tions, mutations in the promoter region, variations in the 
alternative splicing of TERT pre-mRNA, as well as DNA 
methylation of the TERT promoter. Additionally, modifica-
tions such as histone acetylation, methylation, and phos-
phorylation play a role, alongside the disruption of the 
telomere position effect (TPE) and the associated TPE-OLD 
machinery (Wong, Wright et al. 2014; Lewis and Tollefsbol 
2016; Kim and Shay 2018; Yuan, Larsson et al. 2019; Yuan 
and Xu 2019; Dogan and Forsyth 2021).

The amplification of the TERT gene has been found to 
result in the most significant telomerase activity when com-
pared to other mutations that activate this enzyme (Yuan, 
Larsson et al. 2019; Dratwa, Wysoczańska et al. 2020). 
Research conducted by Barthel et al. indicated that TERT 
gene amplification occurs in approximately 4% of cancer 
patients, with a notable prevalence in those diagnosed with 
lung, esophageal, adrenal cortical, and ovarian cancers (Bar-
thel, Wei et al. 2017). The transcriptional activation of the 
TERT gene, influenced by mutations in its promoter region—
particularly the C228T and C250T variants—exhibits vary-
ing frequencies that range from nearly 0% to more than 
90%, contingent upon the specific type of cancer involved 
(Heidenreich, Rachakonda et al. 2014; Panebianco, Nikitski 
et al. 2019; Tornesello, Cerasuolo et al. 2023). Notably, muta-
tions found in promoter regions are more prevalent among 
older individuals diagnosed with cancer, and these muta-
tions have been linked to shorter telomere length (Liu, Yuan 
et al. 2016). The TERT promoter exhibits the most elevated 
mutation rates, reaching as high as 80–90%, particularly in 
bladder-urothelial carcinoma, glioblastoma, melanoma, and 
lower-grade glioma of the brain. In contrast, hepatocellular 
carcinoma and thyroid carcinoma display a moderate fre-
quency of these mutations. Conversely, leukemia, kidney, 
lung, prostate, and gastrointestinal cancers are characterized 
by the lowest mutation rates, which are recorded at less than 
10% (Barthel, Wei et al. 2017). The C288T mutation has 
been found to occur more frequently than the C250T muta-
tion, with both mutations aberrantly creating new binding 
sites for the E-twenty-six (ETS) family of transcription fac-
tors (Bell et al. 2015; Panebianco, Nikitski et al. 2019). In 
terms of prognosis, mutations in the promoter region of the 
TERT gene, both genetic and epigenetic, have been identi-
fied as detrimental factors across a range of malignancies, 
such as melanoma (Motaparthi et al. 2020; van Ipenburg, 
Naus et al. 2021; Guo, Chen et al. 2022), glioblastoma 
(Simon, Hosen et al. 2015; Vuong, Nguyen et al. 2020; 
Olympios, Gilard et al. 2021), and thyroid cancer (Jin, Xu 
et al. 2018; Khatami and Tavangar 2018; Huang, Chen et 
al. 2021). Furthermore, the coexistence of activated muta-
tions in the TERT promoter alongside particular mutations 
in a few oncogenes and signaling pathways has been linked 

activation and ALT, as well as their potential therapeutic tar-
gets within tumor biology.

Telomerase structure and its activation in in 
human cancer

The telomerase complex is a ribonucleoprotein holoenzyme 
that consists of a catalytic component known as telomerase 
reverse transcriptase (TERT), along with its RNA template, 
TERC, which is also identified as hTR. This complex is 
further supported by several associated proteins, includ-
ing dyskerin (DKC1), NOP10, NHP2, NAF1, and GAR1 
(Schmidt and Cech 2015) (Fig.  1). Telomerase exhibits 
activity during the initial phases of human development; 
however, its transcriptional expression is notably silenced 
between the 12th and 18th weeks of gestation (Wojtyla, Gla-
dych et al. 2011). Following the embryonic stage, the major-
ity of human cells demonstrate a transcriptional suppression 
of TERT. However, germ cells, hematopoietic stem cells, 
proliferating lymphocytes, epidermal cells, and intestinal 
epithelial cells possess the ability to express telomerase 
(Roake and Artandi 2020). TERT induction and telomerase 
activation contribute to oncogenesis through two primary 
pathways. The first pathway depends on telomere length-
ening, facilitating continuous cancer cell proliferation by 
preserving telomere length. The second pathway operates 
independently of telomere lengthening and influences onco-
genic processes related to cancer initiation and progression 
through various physiologically linked mechanisms to cel-
lular aging. These mechanisms encompass mitochondrial 
functions, the ubiquitin-proteasomal system, DNA damage 
repair, gene transcription, microRNA (miRNA) expression, 
RNA-dependent RNA polymerase activity, and the process 
of epithelial-mesenchymal transition (Low and Tergaonkar 
2013; Li and Tergaonkar 2014; Yuan, Larsson et al. 2019; 
Dratwa, Wysoczańska et al. 2020; Liu, Zhang et al. 2024). 
Numerous factors influence the activity of TERT across 
multiple regulatory levels. At the transcriptional level, the 
expression of TERT is stimulated by a variety of transcrip-
tion factors that interact with specific sequences located 
within the TERT promoter region. Notable among these are 
c-MYC, which binds to the E-box (5’-CACGTG-3’), SP1, 
which interacts with five GC boxes (5’-GGGCGG-3’), and 
the estrogen receptor α, which targets the estrogen response 
element (ERE). Additionally, other transcription factors 
such as E2F, AP-1, and CCCTC binding factors also play 
significant roles in modulating TERT expression (Koh, 
Khattar et al. 2015; Khattar and Tergaonkar 2017; Leão, 
Apolónio et al. 2018; Dratwa, Wysoczańska et al. 2020). 
The abnormal increase in TERT gene expression within 
tumor cells is induced by a range of genetic and epigenetic 
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marked by pronounced heterogeneity, variable telomere 
lengths (Sommer and Royle 2020), and increased occur-
rences of telomere sister chromatid exchanges (t-SCEs) 
(Blagoev, Goodwin et al. 2010). Additionally, this pheno-
type is characterized by a substantial presence of extrachro-
mosomal telomeric repeat DNA (ECTR) (Komosa, Root et 
al. 2015; Chen, Shen et al. 2017), and the formation of a 
distinct nuclear structure associated with telomeric DNA, 
known as ALT-associated promyelocytic leukemia (PML) 
bodies (APBs) (Armendáriz-Castillo, Hidalgo-Fernández et 
al. 2022; Gaela, Hsia et al. 2024). ALT lacks a universally 
accepted definition, and a majority of cancer cells exhibit 
one or more phenotypic markers, revealing intratumoral 
heterogeneity characterized by variations in telomere 
lengths and TMM activity. This activity includes the coexis-
tence of ALT and telomerase functioning within different 
cellular populations in the same tumor (Gocha, Nuovo et al. 
2013; Pezzolo, Pistorio et al. 2015; Recagni, Bidzinska et al. 
2020; MacKenzie, Watters et al. 2021). It has been proposed 
that stricter regulation of telomerase expression in mesen-
chymal cells, along with a minor fraction of epithelial cells, 
may compel these cells to adopt ALT as a mechanism for 
extending telomere length (Kent, Gracias et al. 2019). Bial-
lelic loss-of-function mutations in the histone chaperone 
DAXX and the chromatin remodeler ATRX have been 
found to have a significant association with the activation of 
the ALT pathway, indicating that these proteins could serve 
as potential candidates for ALT suppression (Heaphy, de 
Wilde et al. 2011; Valenzuela, Amato et al. 2021; Clatter-
buck Soper and Meltzer 2023). Furthermore, neomorphic or 
gain-of-function missense mutations in histones H3.3 and 
H3.1, which are known to play a role in histone methylation, 
have also been linked to increased ALT activity (Chang, 
Chan et al. 2015; Simeonova and Almouzni 2024). Notably, 
the tumor suppressor protein p53 is predominantly inacti-
vated in cell lines and tumors exhibiting ALT, despite the 
fact that mutations in p53 are commonly observed across 
various human cancers (Chen, Zhang et al. 2022; Gulve, Su 
et al. 2022; Macha, Koneru et al. 2022). The most signifi-
cant changes identified concerning ALT are characterized 
by a marked increase in the expression of TERRA long non-
coding RNA (lncRNA), a disturbance in the function of the 
histone chaperone paralogs ASF1a and ASF1b, as well as a 
reduction in nucleosomal density accompanied by modifica-
tions in histone marks (Episkopou, Draskovic et al. 2014; 
O’Sullivan, Arnoult et al. 2014). A thorough comprehension 
of the ALT mechanism holds significant potential for its 
application in clinical environments, particularly in diag-
nosing, prognosis, and treating ALT-positive tumors. The 
diagnosis of ALT is assessed through a non-invasive C-cir-
cle (CC) assay, which may be enhanced by the incorporation 
of quantitative PCR (qPCR) techniques to improve both 

to aggressive phenotypes and unfavorable outcomes in cer-
tain cancers. Notably, this includes the V600E mutation 
in BRAF, as well as the aberrant activation of the MAPK, 
PI3K/AKT, and RAS/MEK signaling pathways (Liu, Qu et 
al. 2014; Macerola, Loggini et al. 2015; Liu, Yin et al. 2017; 
Liu, Zhang et al. 2018; Trybek, Walczyk et al. 2019; Kim, 
Kim et al. 2022a). Moreover, numerous viruses have been 
identified as stimulators of TERT transcription, including 
hepatitis B and C viruses (HBV and HCV), human papil-
lomavirus (HPV), cytomegalovirus (CMV), Epstein-Barr 
virus (EBV), human T-cell leukemia virus-1 (HTLV-1), and 
Kaposi sarcoma-associated herpesvirus (Wang, Deng et al. 
2017; Salimi-Jeda, Badrzadeh et al. 2021). The majority of 
these viruses induce the transcription of TERT through two 
main mechanisms. These include the specific activation of 
TERT expression facilitated by the synthesis of viral oncop-
roteins, as well as the insertion and rearrangement of onco-
genic viral genomes at the TERT gene locus, which occurs 
through the exploitation of enhancers (Tornesello, Cera-
suolo et al. 2022; Rasouli, Dakic et al. 2024).

ALT mechanism and its role in human 
cancers

In cell types lacking telomerase activity or where its func-
tion is suppressed, the elongation of telomere length may 
occur via a mechanism dependent on HR, referred to as 
ALT. Within this framework, it is suggested that cells might 
utilize a telomeric DNA sequence as a template for replica-
tion onto the telomere of a different, non-homologous chro-
mosome. Additionally, this mechanism may involve 
extrachromosomal telomeric DNA, which can be present in 
either circular or linear forms (Rosso, Jones-Weinert et al. 
2023) Telomeric DNA can extend TTAGGG sequences to 
another region within the same telomere via the formation 
of loops, or to the telomere of a sister chromatid. This 
arrangement resembles a replication fork recognized and 
lengthened by DNA polymerase (Hoang and O’Sullivan 
2020). Studies have indicated that ALT occurs in roughly 
15–20% of tumors that lack active telomerase and mitigates 
telomere shortening in mammalian somatic cells when 
examined under in vitro conditions (Zhao, Wang et al. 2019; 
Recagni, Bidzinska et al. 2020). The ALT mechanism is pre-
dominantly identified in aggressive tumors of mesenchymal 
origin that are difficult to treat, as well as in a minor fraction 
of epithelial cancers, including those arising from bone 
(62%), soft tissues (32%), neuroendocrine systems (40%), 
peripheral nervous system (PNS; 23%), and central nervous 
system (CNS; 15%) (Dilley and Greenberg 2015; Apte and 
Cooper 2017). Significant advancements have been achieved 
in our comprehension of the ALT phenotype, which is 
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cells, where its retention is critical for initiating HR that 
supports recombination and ALT activity (Oliva-Rico and 
Herrera 2017; Dueva and Iliakis 2020; Lalonde and Char-
trand 2020). In ALT-positive tumors, the abnormal persis-
tence of TERRA expression during the G2 phase results in 
RPA retention at telomeres, which activates the ataxia telan-
giectasia and Rad-3-related protein (ATR) kinase, a key 
player in DNA damage response and checkpoint signaling, 
thereby enhancing recombination and ALT activity (Oakley 
and Patrick 2010; Liu, Byrne et al. 2023; Agrawal, Lin et al. 
2024). Consequently, targeting the ATR signaling pathway 
with inhibitors presents a promising therapeutic strategy for 
treating cancers characterized by ALT-positive tumors 
(Flynn, Cox et al. 2015). Additionally, the heterodimer 
Hop2-Mnd1 has been identified as crucial for meiotic 
recombination, as it stimulates RAD51 and Dmc1, pro-
cesses that are also involved in telomere movement and 
clustering during ALT recombination (Arnoult and Karl-
seder 2014; Bugreev, Huang et al. 2014; Tsubouchi 2023; 
Ngoi, Pilié et al. 2024).

TMMs as possible therapeutic targets

The distinction between normal and cancer cells is evident 
in their telomere length and telomerase activity, which 
has led to the exploration of anti-telomerase therapies and 
anti-ALT strategies as potential cancer treatments. These 
approaches aim to progressively shorten the telomeres of 
cancerous cells, ultimately eliminating both cancer and can-
cer stem cells, while minimizing damage to healthy cells. 
This selectivity is attributed to the typically lower telom-
erase activity, absence of the ALT mechanism, and gener-
ally longer telomeres found in normal cells compared to 
their malignant counterparts (Reddel 2014). An expanding 
body of research has identified various therapeutic strate-
gies centered around telomerase to accomplish this objec-
tive. These strategies encompass antisense oligonucleotides 
(ASO), agents that mimic telomere uncapping, modulators 
of expression, immunotherapeutic approaches targeting 
telomerase, inhibitors of reverse transcriptase, stabilization 
of G-quadruplex structures, and gene therapy (Jafri, Ansari 
et al. 2016; Trybek, Kowalik et al. 2020; Ali and Walter 
2023). Nevertheless, anti-telomerase therapy approaches 
are unlikely to demonstrate clinical effectiveness in a sig-
nificant proportion of cancers, specifically those that are 
often mesenchymal in origin and rely on ALT mechanisms 
for telomere maintenance, which accounts for approxi-
mately 10–15% of such cases. Therefore, it is imperative to 
develop ALT-specific targeting strategies to provide thera-
peutic benefits for patients suffering from these tumors, 
which typically have a poor prognosis (Zhang, Luo et al. 

sensitivity and specificity (Chen, Dagg et al. 2021). Further-
more, profiling mutations in ALT-related genes such as 
ATRX, DAXX, and H3.3 can effectively indicate ALT 
activity in various tumor types (MacKenzie, Watters et al. 
2021). Notably, ALT telomeres can be differentiated from 
their normal counterparts by the presence of unique telo-
meric repeat variants, such as TCAGGG and TGAGGG, 
which attract specific factors, including the nuclear recep-
tors COUP-TF2 (NR2F2) and NR2C/F, as well as TF4 and 
the zinc-finger nucleosome remodeling complex NuRD-
ZNF827. These interactions modify telomeric chromatin 
and promote telomeric recombination. The orphan nuclear 
receptor NR2C/F, which has been identified as directly 
interacting with ALT telomeres and playing a pivotal role in 
the expression of the ALT phenotype, has been shown to 
facilitate telomere clustering and targeted telomere insertion 
(TTI) at non-telomeric locations (Marzec, Armenise et al. 
2015; Sommer and Royle 2020; Frank, Rademacher et al. 
2022). The presence of these telomere-related structures has 
been shown to create obstacles for the replication machin-
ery. They may act as prevalent fragile sites across the 
genome, promoting chromosomal rearrangements and con-
tributing to genomic instability in tumor cells exhibiting 
ALT (Sfeir, Kosiyatrakul et al. 2009; Bosco and de Lange 
2012). The prior identification of the depletion of NR2C/F 
class nuclear receptors and NuRD-ZNF827 has been shown 
to inhibit the phenotypic characteristics associated with 
ALT (Conomos, Stutz et al. 2012; Conomos, Reddel et al. 
2014). ALT relies on the activity of BLM helicase, which is 
responsible for resolving these intermediates (Jiang, Zhang 
et al. 2024). The prognostic implications of ALT activity in 
human cancers are frequently characterized by inconsis-
tency and complexity. Prior research has indicated that can-
cers exhibiting ALT are typically associated with unfavorable 
prognoses, primarily due to the chromosomal instability 
inherent in these tumors, which may lead to resistance to 
treatment (Lawlor, Veronese et al. 2019; Recagni, Bidzinska 
et al. 2020). As a result, individuals with ALT-positive 
tumors often necessitate targeted therapeutic approaches. 
Conversely, it has also been observed that certain categories 
of ALT-positive tumors can correlate with improved prog-
nostic outcomes (Sung, Lim et al. 2020). TERRA lncRNA 
has been shown to play a significant role in the regulation of 
telomere dynamics by inhibiting the ribonucleoprotein 
hnRNPA1 from displacing replication protein A (RPA), a 
protein that binds to single-stranded DNA, at telomeres dur-
ing the S-phase of the cell cycle (Flynn, Centore et al. 2011; 
Oo, Pálfi et al. 2022; Xu, Senanayaka et al. 2024). Notably, 
the levels of TERRA lncRNA decrease during the G2 phase, 
which allows RPA to interact with POT1, a protein that spe-
cifically recognizes single-stranded telomeric DNA. RPA is 
essential as part of the ALT pathway, particularly in ALT 
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Anti-telomerase therapy approaches

Oligonucleotides have emerged as potential therapeutic 
agents for the inhibition of telomerase through a variety of 
mechanisms. These include TERC-targeting oligonucle-
otides like GRN163L (Imetelstat) and miRNAs, in addition 
to T-oligonucleotides that are homologous to the 3’-telo-
meric overhang (Schrank, Khan et al. 2018; Eckburg, Dein 
et al. 2020). GRN163L characterized as a 13-mer oligonu-
cleotide sequence, functions as a competitive antagonist by 
binding to the TERC template region. This binding action 
obstructs the recruitment of TERC to telomeric DNA, 
thereby preventing it from serving as a template for telo-
meric sequence synthesis and effectively terminating the pri-
mary process of telomerization (Röth, Harley et al. 2010a; 
Schrank, Khan et al. 2018; Bruedigam, Porter et al. 2024). 

2022). Notably, studies have indicated that anti-telomerase 
therapies may inadvertently promote the activation of ALT 
as a resistance mechanism, while anti-ALT treatments can 
trigger the reactivation of telomerase. Consequently, there is 
a pressing need for anti-TMM therapy strategies that utilize 
selective agents targeting both telomerase and ALT concur-
rently to achieve optimal clinical outcomes (Hu, Hwang et 
al. 2012; Dilley and Greenberg 2015). Fig. 2 depicts an over-
view of strategies aimed at targeting TMMs in immortalized 
cancer cell lines, and the subsequent sections will provide 
an in-depth examination of various anti-TMM techniques.

Fig. 2  Schematic illustration of two distinct mechanisms by which telomeres are maintained in cancerous cells, along with the corresponding 
therapeutic approaches aimed at targeting these mechanisms
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Faller 2011; Pitman, Wojdyla et al. 2013; Wojdyla, Stone et 
al. 2014).

The third category of oligonucleotide-based therapies 
includes exogenous small interfering RNAs (siRNAs) and 
endogenous miRNAs that act as tumor suppressors. These 
molecules play a crucial role in inhibiting cellular processes 
such as proliferation, migration, invasion, and metastasis by 
regulating the expression of hTERT at the post-transcrip-
tional level. This regulation is achieved through their inter-
action with the RNA-induced silencing complex (RISC), 
which effectively silences target genes (Zhang, Xiao et al. 
2015; Zhou, Fei et al. 2016; Guzman, Sanders et al. 2018; 
Zhang, Chen et al. 2023). However, oncogenic miRNAs, 
including miR-21, have been shown to facilitate the trans-
formation of tumor cells by enhancing the expression of 
TERT. This mechanism presents potential targets for anti-
oncogenic miRNA antisense therapy, which aims to inhibit 
their function (Yang et al. 2015; Nguyen and Chang 2017; 
Rhim, Baek et al. 2022). In addition to TERT, the TERC 
gene and its corresponding mRNA are also susceptible 
to modulation by both oncogenic and tumor-suppressive 
miRNA therapies (Eckburg, Dein et al. 2020). Moreover, 
studies have revealed that miRNAs can affect TERT expres-
sion by altering upstream signaling pathways, thereby offer-
ing additional avenues for therapeutic intervention (Wang, 
Sun et al. 2012; Ohira, Naohiro et al. 2015; Farooqi, Man-
soor et al. 2018; Eckburg, Dein et al. 2020). Short hairpin 
RNA (shRNA) can be introduced into the nucleus through 
an expression vector, leading to sustained expression and 
more prolonged gene silencing compared to siRNA. A sig-
nificant challenge associated with siRNA-based therapeutic 
approaches is their limited biological stability and tran-
sient silencing capability, as approximately 99% of duplex 
siRNAs are degraded within 48  h post-delivery into cells 
(Hu, Zhong et al. 2020). Research has shown that plasmid-
based delivery systems for shRNA targeting either TERT or 
TERC can effectively reduce telomere length and inhibit the 
growth of cancer cells (Chen, Gu et al. 2017).

Anti-telomerase immunotherapy is another therapeutic 
approach mediated by immune cells. Vaccines that target 
telomerase can enhance the sensitivity and activation of 
CD8+ and CD4+ T lymphocytes against cancer cells that 
present TERT peptides as surface antigens via human leu-
kocyte antigen (HLA) classes I and II. This process ulti-
mately results in the generation of telomerase-specific 
cytotoxic T lymphocytes (CTLs), which are instrumental in 
the destruction of TERT-positive malignant cells (Mizuko-
shi and Kaneko 2019; Berei, Eckburg et al. 2020; Elling-
sen, Mangsbo et al. 2021; Yan, Lin et al. 2023). Numerous 
TERT-targeted peptide vaccines have been developed to 
date, with GV1001 being the most advanced among them. 
This particular vaccine has shown remarkable efficacy and 

Although GRN163L demonstrates potential antitumor effi-
cacy, it has been shown to exhibit toxic side effects when 
used as monotherapy across various human malignancies 
(Thompson, Drissi et al. 2013; Frink, Peyton et al. 2016; 
Wang, Hu et al. 2018). Notably, this agent is associated with 
significant hematological toxicity, particularly manifesting 
as neutropenia and thrombocytopenia, which considerably 
restricts its application in clinical practice (Ratain, Kelsey et 
al. 2010; Thompson, Drissi et al. 2013; Chiappori, Kolevska 
et al. 2015; Salloum, Hummel et al. 2016). It has also been 
observed that certain varieties of tumor cells treated with 
GRN163L exhibit signs of accelerated aging and undergo 
apoptosis over an extended period (Shammas, Koley et al. 
2008; Röth, Harley et al. 2010b; Burchett, Yan et al. 2014). 
The application of GRN163L as a viable anti-tumor thera-
peutic agent is hindered by significant adverse effects on 
mesenchymal stem cells. These effects encompass notable 
changes in cellular morphology, a reduction in adhesion 
capabilities, and an interruption of the cell cycle, particu-
larly manifesting as a G1 phase arrest (Joseph, Tressler et 
al. 2010; Tokcaer-Keskin, Dikmen et al. 2010; Nitta, Go et 
al. 2012; Schrank, Khan et al. 2018) GRN163L has been 
reported to exhibit limited efficacy when administered as a 
monotherapy for tumor cells, alongside significant adverse 
effects on both hematopoietic and mesenchymal stem cells. 
However, promising outcomes have been observed when 
GRN163L is utilized in conjunction with other molecularly 
targeted therapies or employed to enhance the sensitivity 
of tumor cells to radiation treatment (Koziel and Herbert 
2015; Burchett, Etekpo et al. 2017; Wu, Zhang et al. 2017; 
Hu, Huang et al. 2019). T-oligos, which are analogous to 
the 3’-telomeric overhang, represent a novel category of 
telomere-targeted therapeutic strategies. These oligonucle-
otides accumulate within the nucleus and are recognized 
due to their homology with telomeric sequences. They 
compete with conventional telomeric DNA, resulting in the 
disruption of the typical telomere architecture through the 
action of distinct shelterin complex proteins. Furthermore, 
T-oligos activate the ataxia telangiectasia mutated (ATM) 
signaling pathway and induce cytotoxic effects by expos-
ing the telomere overhang. This exposure subsequently 
triggers cellular responses to DNA damage and initiates the 
DNA damage response (DDR) mechanism (Crees, Girard 
et al. 2014; Chhabra, Wojdyla et al. 2018; Schrank, Khan 
et al. 2018; Eckburg, Dein et al. 2020). The introduction of 
T-oligos into clinical trials faces certain challenges, primar-
ily due to their susceptibility to nuclease-mediated degrada-
tion and a lack of comprehensive understanding regarding 
their mechanisms of action. Nevertheless, T-oligos have 
exhibited significant anti-tumor effects when utilized in 
combination therapy approaches, as well as enhancing the 
sensitivity of cancer cells to radiation treatment (Sarkar and 
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and virally infected cells. In prior research, various nucleo-
side analogs have been recognized as effective inhibitors 
and antagonists of telomerase, demonstrating irreversible 
inhibition. Notable examples of these compounds include 
azidothymidine (AZT), acyclovir, and penciclovir, all of 
which have shown to be instrumental in cancer therapy, par-
ticularly when utilized in combination treatments (Gomez, 
Armando et al. 2016; Fang, Hu et al. 2017; Wang, Zhou 
et al. 2017). A distinct category of reverse transcriptase 
inhibitors, referred to as small molecule inhibitors, includes 
compounds like BIBR1532 acid, which exert their effects 
by non-competitively binding to the active site of TERT, 
thereby specifically inhibiting the activity of telomerase 
(Altamura, Degli Uberti et al. 2020). One approach to indi-
rectly suppress telomerase activity involves the stabiliza-
tion of G-quadruplex structures, which effectively prevents 
the single-stranded telomere overhang from unfolding and 
being detected by TERC. Among the various compounds 
studied for their ability to bind to and stabilize G-qua-
druplexes in the context of cancer therapy, Telomestatin, 
BRACO-1910, and RHPS4 have garnered significant atten-
tion (Bryan 2020; El-Khoury et al. 2023). In addition, novel 
steroid derivatives, specifically malouetine, and steroid FG 
have been identified as effective stabilizers of G-quadru-
plexes, as well as inducers of telomere uncapping. These 
compounds exhibit a nonplanar and nonaromatic configu-
ration, distinguishing them from previously characterized 
G-quadruplex ligands (Xu, Di Antonio et al. 2017; Eitsuka, 
Nakagawa et al. 2018; Awadasseid, Ma et al. 2021; Zegers, 
Peters et al. 2023).

The ultimate strategy involving telomere-based thera-
pies pertains to the anticancer potential of gene therapy, 
wherein the TERT gene, typically a supportive element in 
approximately 85% of cancer cells that demonstrate TERT 
overexpression, is transformed into a detrimental adversary 
through the activation of gene expression driven by the 
TERT promoter (Hong and Yun 2019). The human TERT 
promoter presents a noteworthy advancement in cancer 
gene therapy, as it demonstrates the ability to target a wide 
range of malignancies, unlike many earlier cancer-specific 
promoters that were limited to selectively addressing only 
a narrow spectrum of cancers in a tissue-specific context. 
This broad applicability of the TERT promoter in therapeu-
tic applications holds significant promise for the develop-
ment of gene therapies that can effectively engage with the 
majority of cancer types (Quazi 2022). The limited expres-
sion of transgenes driven by the human TERT promoter 
in normal somatic cells and bone marrow progenitor cells 
results in negligible acute and chronic toxicity. A prevalent 
approach in TERT promoter-driven gene therapy involves 
the expression of therapeutic genes, which may encom-
pass anticancer transgenes, miRNAs, or components of the 

importance while maintaining a favorable safety profile, 
particularly in terms of its impact on bone marrow func-
tion (Mizukoshi and Kaneko 2019; Jo, Kim et al. 2024). 
The peptide vaccine GV1001 is characterized as an HLA-
II-restricted peptide, which elicits robust responses from 
both CD4+ and CD8+ T cells, as well as the activation of 
CTLs across various types of malignancies (Staff, Mozaffari 
et al. 2014; Kim, Cho et al. 2022; Kim, Kim et al. 2022b). 
TERT-based peptide vaccines have been shown to pro-
voke significant immune responses in T-type cells, notably 
including GX301 and Vx-001 (UV1). The GX301vaccine 
comprises four peptides derived from TERT and is classi-
fied as a multi-peptide vaccine, exhibiting greater efficacy 
compared to single-peptide alternatives (Fenoglio, Traverso 
et al. 2013; Fenoglio, Parodi et al. 2015; Kailashiya, Sharma 
et al. 2017; Dosset, Castro et al. 2020; Negrini, De Palma 
et al. 2020). Notably, these vaccines elicit distinct immune 
responses that vary according to the type of tumor. For 
instance, GV1001 has demonstrated superior effectiveness 
in treating pancreatic cancer, non-small cell lung carcinoma 
(NSCLC), and melanoma, while GX301 has shown marked 
efficacy in prostate and kidney cancers. Additionally, UV1 
has proven to be particularly effective in both prostate can-
cer and NSCLC (Kailashiya, Sharma et al. 2017; Bajaj, 
Kumar et al. 2020; Negrini, De Palma et al. 2020; Relitti, 
Saraswati et al. 2020; Ellingsen, Mangsbo et al. 2021). In 
recent developments, DNA vaccines have emerged along-
side peptide vaccines, which are designed to elicit immune 
responses in T cells through the introduction of the TERT 
gene sequence or a plasmid that encodes the TERT peptide 
into antigen-presenting cells (APCs). Notably, the two vac-
cines belonging to this category are phTERT and INVAC-1 
(Yan, Pankhong et al. 2013; Thalmensi, Pliquet et al. 2016; 
Melssen and Slingluff 2017; Negrini, De Palma et al. 2020). 
Additionally, immunotherapy also employs dendritic cells 
(DCs), which are recognized as the most potent APCs, to 
stimulate immune responses. A notable example of a DC-
based cancer vaccine is GRNVAC1, which elicits a robust 
polyclonal immune response that has demonstrated effi-
cacy, safety, and tolerability across a range of cancer types 
(DiPersio, Collins Jr et al. 2009; Khoury, Collins Jr et al. 
2010; Relitti, Saraswati et al. 2020; Yu, Sun et al. 2022). 
Another innovative DC-based vaccine involves the trans-
fection of TERT mRNA, enabling the presentation of TERT-
associated antigens to T cells; this approach is referred to as 
the TAPCells vaccine (Salazar-Onfray, Pereda et al. 2013; 
Galati and Zanotta 2018; Zhang, Tang et al. 2023).

The enzyme reverse transcriptase has been found to 
exhibit activity in a significant number of tumor cells, as 
well as in cells that are infected with retroviruses. Conse-
quently, inhibitors targeting this enzyme may play a vital 
role in the therapeutic management of both neoplastic cells 
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various cancers at positions − 124 and − 146, adjacent to the 
ATG codon of TERT. This mutation is associated with an 
increase in the transcriptional activity of the altered TERT 
promoters (Liu, Yuan et al. 2016; Balon, Sheriff et al. 2022) 
The application of CRISPR/Cas9 to correct these mutations 
has yielded significant outcomes in urothelial cancer cell 
lines (Xi, Schmidt et al. 2015).

ALT-specific targeting strategies

Numerous studies have established that therapies targeting 
telomerase are unlikely to demonstrate clinical effectiveness 
in cancers characterized by ALT (Temime-Smaali, Guittat et 
al. 2009; Wu, Chen et al. 2019; Awadasseid, Ma et al. 2021). 
Thus, effective treatment strategies for patients with tumors 
that exhibit ALT must be specifically designed to target this 
mechanism, particularly given the often poor prognoses 
associated with such tumors. It has been suggested that ther-
apies based on telomerase, including telomerase inhibitors, 
may prompt tumor cells to adopt ALT as a means of resis-
tance. Consequently, the use of ALT inhibitors in conjunc-
tion with telomerase inhibitors could be beneficial for both 
telomerase-positive tumors and those that are initially ALT-
positive. However, it is important to note that telomerase 
reactivation can be a resistance strategy in tumors undergo-
ing treatment with ALT inhibitors. Therefore, it is essential 
to prescribe both telomerase and ALT inhibitors, regard-
less of the TMM employed by the tumor (Gao and Pickett 
2022). Notably, ALT cells typically possess significantly 
shorter telomeres compared to telomerase-positive cells, 
and the complete disruption of the ALT mechanism can lead 
to severe telomere uncapping, which in turn triggers a cas-
cade of detrimental effects, including damage signals, toxic 
chromosomal fusions, cellular senescence, apoptosis, and 
increased genomic instability, ultimately resulting in cell 
death (Kaul, Cesare et al. 2011; Ali and Walter 2023) Recent 
studies have identified key characteristics of ALT cells, high-
lighting alterations in the chromatin landscape surrounding 
telomeres, the upregulation of TERRA lncRNA, enhanced 
activation of the ATR signaling pathway, increased interac-
tions with nuclear receptors, telomere repositioning driven 
by HR, and recombination events occurring between non-
sister chromatids. These identified features present signifi-
cant potential for the development of therapies targeting 
ALT mechanisms (Sohn, Goralsky et al. 2023). In particu-
lar, the inhibition of ATR emerges as a promising strategy 
for treating cancers that exhibit a high frequency of ALT, as 
it is believed to enhance the sensitivity of ALT-dependent 
cells to therapeutic interventions (Episkopou, Draskovic et 
al. 2014). As mentioned earlier, APBs have been recognized 
as pivotal elements in the formation of structural platforms 

CRISPR/Cas9 system (Li, Tan et al. 2011; Watanabe, Ueki 
et al. 2011; Xiong, Sun et al. 2012; Higashi, Hazama et al. 
2014; Liu et al. 2016; Huang, Zhuang et al. 2017; Hong and 
Yun 2019; Balon, Sheriff et al. 2022). The forefront of anti-
cancer gene therapy has been marked by the innovative use 
of transgenes that facilitate the direct elimination of cancer 
cells. This approach includes the delivery of suicide genes, 
which encode enzymes responsible for converting prodrugs 
into active therapeutic agents, through adenovirus-medi-
ated systems (Zeng, Zhang et al. 2024). Additionally, the 
incorporation of proapoptotic genes has also been explored 
as a means to induce programmed cell death in malignant 
cells (Rubis, Holysz et al. 2013). The utilization of TERT 
promoter-driven and CRISPR/Cas9-based genetic circuits 
presents a novel strategy for the targeted silencing of spe-
cific oncogenes in various cancer types. A notable instance 
of this therapeutic methodology involved a lentiviral deliv-
ery system designed to express a guide RNA targeting 
HRAS, alongside a human TERT promoter-driven GAL4 
and UAS-activated Cas9 nuclease (referred to as HRAS-
LV). This system demonstrated a significant enhancement 
in the silencing of HRAS in bladder cancer-derived cell 
lines (Huang, Zhuang et al. 2017). Moreover, the human 
TERT promoter can produce oncolytic adenoviruses that 
are specific to cancer by enhancing the expression of critical 
replicative genes, including the E1A gene (Zhou, Ma et al. 
2021). The predominant optimization within this therapeutic 
framework involved the creation of various modified forms 
of human TERT (mTERT) that facilitate the replication of 
oncolytic adenoviruses. This was achieved by incorporating 
additional binding sites for oncogenic transcription factors, 
such as Sp1 and c-Myc, located upstream of the promoter 
region. Furthermore, a hybrid cancer-specific promoter was 
engineered by merging the promoters of E2F and mTERT, 
supplemented with multiple hypoxia response elements 
(HRE), resulting in two unique hypoxia-responsive and 
cancer-specific promoters, designated as HEmT and HmTE. 
Additionally, an advanced hybrid cancer-specific mTERT 
promoter was developed by integrating six copies of HRE 
and five copies of c-Myc binding sites upstream of mTERT, 
culminating in the formation of H5CmTERT (Kim, Kim et 
al. 2003; Li, Hong et al. 2018; Oh, Hong et al. 2018). The 
mTERT promoters have been identified as effective enhanc-
ers of transgene expression levels. As a result, oncolytic 
adenoviruses that utilize mTERT promoter-driven repli-
cation exhibit enhanced potency and prolonged antitumor 
effects. Furthermore, the CRISPR/Cas9 technology presents 
a viable approach for rectifying prevalent mutations in the 
human TERT promoter, thereby paving the way for person-
alized therapeutic strategies. A notable example includes 
a C > T single-nucleotide mutation found in the proximal 
promoter region of TERT, which is frequently observed in 
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