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Abstract

Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular
division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence
by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be
categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthen-
ing of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been
developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as
small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators,
immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex struc-
tures, and gene therapy approaches. Conversely, in the remaining 5—-15% of human cancers that rely on ALT, mechanisms
involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding
RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased
interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister
chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has
emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal
clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of
the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements
in TMM-based cancer therapies.
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Introduction

Telomeres are nucleoprotein complexes located at the ter-
minal sections of chromosomal arms. They primarily safe-
guard the terminal regions of telomeric DNA against the
cellular DNA repair mechanisms (Shay and Wright 2019;
Cohen and Bryan 2022). In each cell cycle of somatic cells,
the DNA sequences of chromosomal termini are attrited.
After a limited number of divisions, this phenomenon causes
the cells to enter the replicative senescence and finally die
(Victorelli and Passos 2017). In all proliferating normal
cells, telomere length is gradually diminished, attributed to
factors such as oxidative stress, exonucleolytic trimming,
and other cellular processes, alongside the inherent insuffi-
ciency of lagging strand DNA replication. Cancer cells have
adopted mechanisms for preventing telomere shortening.
Hence, therapeutic strategies have been developed against
telomere maintenance of malignancies (Xu and Goldkorn
2016).

Mammalian telomeres are characterized by a conserved
hexameric tandem repeat sequence denoted as (TTAGGG).
This sequence is organized into a configuration that resem-
bles a lariat, referred to as a T-loop and is associated with
a complex of six different proteins (Phan 2010). As shown
in Fig. 1, the looped configuration begins with nucleolytic
processes at the ends of telomeric DNA. The process cul-
minates in forming an elongated single-stranded overhang
characterized by a high concentration of guanine bases. This

overhang then undergoes a folding process, resulting in the
establishment of a T-loop, which subsequently invades the
double-helical configuration of the telomeric DNA, thereby
facilitating the creation of a displacement loop, commonly
referred to as a D-loop (Webb, Wu et al. 2013; Tomaska,
Cesare et al. 2020). The Shelterin complex, comprising six
distinct proteins, is closely associated with telomeric DNA.
This assembly is crucial for properly functioning and main-
taining chromosome ends in mammalian cells, playing a
vital role in safeguarding the integrity of telomeric regions
(Zinder, Olinares et al. 2022; Hu, Yan et al. 2024). The sin-
gle-stranded TTAGGG sequence-binding protein, known as
protection of telomeres 1 (POT1), functions in conjunction
with the double-stranded TTAGGG sequence-binding telo-
meric repeat-binding factors 1 and 2 (TRF1/2 or TERF1/2)
(Glousker, Briod et al. 2020; Kallingal, Krzemieniecki et al.
2024). This collaboration is further enhanced by the involve-
ment of three additional proteins. These include a subunit of
the shelterin complex that also acts as a telomerase recruit-
ment factor, known as the adrenocortical dysplasia homolog
protein (ACD, which is also referred to as TPP1, PIP1, and
PTOP), the TERF1 interacting nuclear factor 2 (TINF2, also
known as TIN2), and the TERF2 interacting protein (TER-
F2IP, also called RAP1). Together, these proteins are assem-
bled at the telomere through their interactions with TRF1
and TRF2, thereby playing a crucial role in the maintenance
and protection of telomeres (Nandakumar and Cech 2013;
Smith, Pendlebury et al. 2020; Lim and Cech 2021; Zhang,

TELOMERASE HOLOENZYME

AATCCAATCCC = 5’

SH ELTERINACOMPLEX

T-LOOP

(TTAGGG)n __ 3’

(AATCCC)n

Fig. 1 Schematic presentation of telomeres and the main components of telomerase
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Hou et al. 2023). A comprehensive overview of these six
members of the shelterin complex and their characteristics
is provided in Table 1.

It is proposed that telomeric sequences act as a protec-
tive buffer, preventing the loss of critical genetic infor-
mation (Jenner, Peska et al. 2022). The primary role of
telomeres is to safeguard the terminal regions of chromo-
somes. This protective function is achieved through two
distinct mechanisms. Firstly, telomeres serve as protec-
tors against inappropriate DNA repair processes, thereby
shielding chromosomes from irregular recombination and
fusion occurrences. Secondly, they inhibit the degradation
of genes located near the chromosome ends, a process that
could arise from incomplete DNA replication (Martinez
and Blasco 2011; Trybek, Kowalik et al. 2020; Cohen and
Bryan 2022). Notwithstanding this protective mechanism,
a gradual reduction in telomere length is commonly noted.
The critical limit of telomere length is linked to its grad-
ual reduction throughout the process of DNA replication.
This reduction hinders the shelterin complex proteins from
adequately associating with the telomeric DNA sequences,
resulting in an inability to perform their protective function
at the termini of chromosomes. In the majority of differenti-
ated somatic cells, there is an intrinsic decrease of roughly
30-150 base pairs in telomere length with each cellular
division, along with changes in their spatial structure, ulti-
mately leading to a diminished ability to establish protective
T loops (Lulkiewicz, Bajsert et al. 2020). The steady short-
ening of telomere length eventually attains a threshold that
activates multiple signaling pathways, initiating the process
of cellular senescence. This process results in the halting
of cell division, signifying that the cell is approaching its
maximum replicative potential, a concept referred to as the
Hayflick limit. This limit is a fundamental protective mech-
anism against tumorigenesis (Shay 2016; Niveta, Kumar
et al. 2022). To bypass this state of replicative senescence
and maintain telomere length within viable limits, two main
approaches are utilized in cancer cells: the enzymatic func-
tion of telomerase and the alternative lengthening of telo-
meres (ALT), a process that is supported by homologous
recombination (HR) (Maciejowski and de Lange 2017).
Telomerase activation is detected in 85-95% of human can-
cers, while ALT recombination mechanisms occur in 5-15%
of cases (Claude and Decottignies 2020). Recent studies
have suggested that dual telomere maintenance mechanisms
(TMMs) can coexist within the same cellular structures. It
has been argued, however, that this co-occurrence might be
attributed to the experimental methodologies used, rather
than being a fundamental trait commonly seen in cellular
processes (De Vitis, Berardinelli et al. 2018). In this review,
we will focus on the mechanisms underlying telomerase
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Table 1 Characteristics and function of six members of shelterin complex
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activation and ALT, as well as their potential therapeutic tar-
gets within tumor biology.

Telomerase structure and its activation in in
human cancer

The telomerase complex is a ribonucleoprotein holoenzyme
that consists of a catalytic component known as telomerase
reverse transcriptase (TERT), along with its RNA template,
TERC, which is also identified as hTR. This complex is
further supported by several associated proteins, includ-
ing dyskerin (DKC1), NOP10, NHP2, NAF1, and GAR1
(Schmidt and Cech 2015) (Fig. 1). Telomerase exhibits
activity during the initial phases of human development;
however, its transcriptional expression is notably silenced
between the 12th and 18th weeks of gestation (Wojtyla, Gla-
dych et al. 2011). Following the embryonic stage, the major-
ity of human cells demonstrate a transcriptional suppression
of TERT. However, germ cells, hematopoietic stem cells,
proliferating lymphocytes, epidermal cells, and intestinal
epithelial cells possess the ability to express telomerase
(Roake and Artandi 2020). TERT induction and telomerase
activation contribute to oncogenesis through two primary
pathways. The first pathway depends on telomere length-
ening, facilitating continuous cancer cell proliferation by
preserving telomere length. The second pathway operates
independently of telomere lengthening and influences onco-
genic processes related to cancer initiation and progression
through various physiologically linked mechanisms to cel-
lular aging. These mechanisms encompass mitochondrial
functions, the ubiquitin-proteasomal system, DNA damage
repair, gene transcription, microRNA (miRNA) expression,
RNA-dependent RNA polymerase activity, and the process
of epithelial-mesenchymal transition (Low and Tergaonkar
2013; Li and Tergaonkar 2014; Yuan, Larsson et al. 2019;
Dratwa, Wysoczanska et al. 2020; Liu, Zhang et al. 2024).
Numerous factors influence the activity of TERT across
multiple regulatory levels. At the transcriptional level, the
expression of TERT is stimulated by a variety of transcrip-
tion factors that interact with specific sequences located
within the TERT promoter region. Notable among these are
¢-MYC, which binds to the E-box (5’-CACGTG-3’), SP1,
which interacts with five GC boxes (5’-GGGCGG-3’), and
the estrogen receptor o, which targets the estrogen response
element (ERE). Additionally, other transcription factors
such as E2F, AP-1, and CCCTC binding factors also play
significant roles in modulating TERT expression (Koh,
Khattar et al. 2015; Khattar and Tergaonkar 2017; Ledo,
Apolonio et al. 2018; Dratwa, Wysoczanska et al. 2020).
The abnormal increase in TERT gene expression within
tumor cells is induced by a range of genetic and epigenetic
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modifications. These alterations encompass gene amplifica-
tions, mutations in the promoter region, variations in the
alternative splicing of TERT pre-mRNA, as well as DNA
methylation of the TERT promoter. Additionally, modifica-
tions such as histone acetylation, methylation, and phos-
phorylation play a role, alongside the disruption of the
telomere position effect (TPE) and the associated TPE-OLD
machinery (Wong, Wright et al. 2014; Lewis and Tollefsbol
2016; Kim and Shay 2018; Yuan, Larsson et al. 2019; Yuan
and Xu 2019; Dogan and Forsyth 2021).

The amplification of the TERT gene has been found to
result in the most significant telomerase activity when com-
pared to other mutations that activate this enzyme (Yuan,
Larsson et al. 2019; Dratwa, Wysoczanska et al. 2020).
Research conducted by Barthel et al. indicated that TERT
gene amplification occurs in approximately 4% of cancer
patients, with a notable prevalence in those diagnosed with
lung, esophageal, adrenal cortical, and ovarian cancers (Bar-
thel, Wei et al. 2017). The transcriptional activation of the
TERT gene, influenced by mutations in its promoter region—
particularly the C228T and C250T variants—exhibits vary-
ing frequencies that range from nearly 0% to more than
90%, contingent upon the specific type of cancer involved
(Heidenreich, Rachakonda et al. 2014; Panebianco, Nikitski
etal.2019; Tornesello, Cerasuolo etal. 2023). Notably, muta-
tions found in promoter regions are more prevalent among
older individuals diagnosed with cancer, and these muta-
tions have been linked to shorter telomere length (Liu, Yuan
et al. 2016). The TERT promoter exhibits the most elevated
mutation rates, reaching as high as 80-90%, particularly in
bladder-urothelial carcinoma, glioblastoma, melanoma, and
lower-grade glioma of the brain. In contrast, hepatocellular
carcinoma and thyroid carcinoma display a moderate fre-
quency of these mutations. Conversely, leukemia, kidney,
lung, prostate, and gastrointestinal cancers are characterized
by the lowest mutation rates, which are recorded at less than
10% (Barthel, Wei et al. 2017). The C288T mutation has
been found to occur more frequently than the C250T muta-
tion, with both mutations aberrantly creating new binding
sites for the E-twenty-six (ETS) family of transcription fac-
tors (Bell et al. 2015; Panebianco, Nikitski et al. 2019). In
terms of prognosis, mutations in the promoter region of the
TERT gene, both genetic and epigenetic, have been identi-
fied as detrimental factors across a range of malignancies,
such as melanoma (Motaparthi et al. 2020; van Ipenburg,
Naus et al. 2021; Guo, Chen et al. 2022), glioblastoma
(Simon, Hosen et al. 2015; Vuong, Nguyen et al. 2020;
Olympios, Gilard et al. 2021), and thyroid cancer (Jin, Xu
et al. 2018; Khatami and Tavangar 2018; Huang, Chen et
al. 2021). Furthermore, the coexistence of activated muta-
tions in the TERT promoter alongside particular mutations
in a few oncogenes and signaling pathways has been linked
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to aggressive phenotypes and unfavorable outcomes in cer-
tain cancers. Notably, this includes the V600OE mutation
in BRAF, as well as the aberrant activation of the MAPK,
PI3K/AKT, and RAS/MEK signaling pathways (Liu, Qu et
al. 2014; Macerola, Loggini et al. 2015; Liu, Yin et al. 2017,
Liu, Zhang et al. 2018; Trybek, Walczyk et al. 2019; Kim,
Kim et al. 2022a). Moreover, numerous viruses have been
identified as stimulators of TERT transcription, including
hepatitis B and C viruses (HBV and HCV), human papil-
lomavirus (HPV), cytomegalovirus (CMV), Epstein-Barr
virus (EBV), human T-cell leukemia virus-1 (HTLV-1), and
Kaposi sarcoma-associated herpesvirus (Wang, Deng et al.
2017; Salimi-Jeda, Badrzadeh et al. 2021). The majority of
these viruses induce the transcription of TERT through two
main mechanisms. These include the specific activation of
TERT expression facilitated by the synthesis of viral oncop-
roteins, as well as the insertion and rearrangement of onco-
genic viral genomes at the TERT gene locus, which occurs
through the exploitation of enhancers (Tornesello, Cera-
suolo et al. 2022; Rasouli, Dakic et al. 2024).

ALT mechanism and its role in human
cancers

In cell types lacking telomerase activity or where its func-
tion is suppressed, the elongation of telomere length may
occur via a mechanism dependent on HR, referred to as
ALT. Within this framework, it is suggested that cells might
utilize a telomeric DNA sequence as a template for replica-
tion onto the telomere of a different, non-homologous chro-
mosome. Additionally, this mechanism may involve
extrachromosomal telomeric DNA, which can be present in
either circular or linear forms (Rosso, Jones-Weinert et al.
2023) Telomeric DNA can extend TTAGGG sequences to
another region within the same telomere via the formation
of loops, or to the telomere of a sister chromatid. This
arrangement resembles a replication fork recognized and
lengthened by DNA polymerase (Hoang and O’Sullivan
2020). Studies have indicated that ALT occurs in roughly
15-20% of tumors that lack active telomerase and mitigates
telomere shortening in mammalian somatic cells when
examined under in vitro conditions (Zhao, Wang et al. 2019;
Recagni, Bidzinska et al. 2020). The ALT mechanism is pre-
dominantly identified in aggressive tumors of mesenchymal
origin that are difficult to treat, as well as in a minor fraction
of epithelial cancers, including those arising from bone
(62%)), soft tissues (32%), neuroendocrine systems (40%),
peripheral nervous system (PNS; 23%), and central nervous
system (CNS; 15%) (Dilley and Greenberg 2015; Apte and
Cooper 2017). Significant advancements have been achieved
in our comprehension of the ALT phenotype, which is

marked by pronounced heterogeneity, variable telomere
lengths (Sommer and Royle 2020), and increased occur-
rences of telomere sister chromatid exchanges (t-SCEs)
(Blagoev, Goodwin et al. 2010). Additionally, this pheno-
type is characterized by a substantial presence of extrachro-
mosomal telomeric repeat DNA (ECTR) (Komosa, Root et
al. 2015; Chen, Shen et al. 2017), and the formation of a
distinct nuclear structure associated with telomeric DNA,
known as ALT-associated promyelocytic leukemia (PML)
bodies (APBs) (Armendariz-Castillo, Hidalgo-Fernandez et
al. 2022; Gaela, Hsia et al. 2024). ALT lacks a universally
accepted definition, and a majority of cancer cells exhibit
one or more phenotypic markers, revealing intratumoral
heterogeneity characterized by variations in telomere
lengths and TMM activity. This activity includes the coexis-
tence of ALT and telomerase functioning within different
cellular populations in the same tumor (Gocha, Nuovo et al.
2013; Pezzolo, Pistorio et al. 2015; Recagni, Bidzinska et al.
2020; MacKenzie, Watters et al. 2021). It has been proposed
that stricter regulation of telomerase expression in mesen-
chymal cells, along with a minor fraction of epithelial cells,
may compel these cells to adopt ALT as a mechanism for
extending telomere length (Kent, Gracias et al. 2019). Bial-
lelic loss-of-function mutations in the histone chaperone
DAXX and the chromatin remodeler ATRX have been
found to have a significant association with the activation of
the ALT pathway, indicating that these proteins could serve
as potential candidates for ALT suppression (Heaphy, de
Wilde et al. 2011; Valenzuela, Amato et al. 2021; Clatter-
buck Soper and Meltzer 2023). Furthermore, neomorphic or
gain-of-function missense mutations in histones H3.3 and
H3.1, which are known to play a role in histone methylation,
have also been linked to increased ALT activity (Chang,
Chan et al. 2015; Simeonova and Almouzni 2024). Notably,
the tumor suppressor protein p53 is predominantly inacti-
vated in cell lines and tumors exhibiting ALT, despite the
fact that mutations in p53 are commonly observed across
various human cancers (Chen, Zhang et al. 2022; Gulve, Su
et al. 2022; Macha, Koneru et al. 2022). The most signifi-
cant changes identified concerning ALT are characterized
by a marked increase in the expression of TERRA long non-
coding RNA (IncRNA), a disturbance in the function of the
histone chaperone paralogs ASFla and ASF1b, as well as a
reduction in nucleosomal density accompanied by modifica-
tions in histone marks (Episkopou, Draskovic et al. 2014;
O’Sullivan, Arnoult et al. 2014). A thorough comprehension
of the ALT mechanism holds significant potential for its
application in clinical environments, particularly in diag-
nosing, prognosis, and treating ALT-positive tumors. The
diagnosis of ALT is assessed through a non-invasive C-cir-
cle (CC) assay, which may be enhanced by the incorporation
of quantitative PCR (qPCR) techniques to improve both
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sensitivity and specificity (Chen, Dagg et al. 2021). Further-
more, profiling mutations in ALT-related genes such as
ATRX, DAXX, and H3.3 can effectively indicate ALT
activity in various tumor types (MacKenzie, Watters et al.
2021). Notably, ALT telomeres can be differentiated from
their normal counterparts by the presence of unique telo-
meric repeat variants, such as TCAGGG and TGAGGG,
which attract specific factors, including the nuclear recep-
tors COUP-TF2 (NR2F2) and NR2C/F, as well as TF4 and
the zinc-finger nucleosome remodeling complex NuRD-
ZNF827. These interactions modify telomeric chromatin
and promote telomeric recombination. The orphan nuclear
receptor NR2C/F, which has been identified as directly
interacting with ALT telomeres and playing a pivotal role in
the expression of the ALT phenotype, has been shown to
facilitate telomere clustering and targeted telomere insertion
(TTI) at non-telomeric locations (Marzec, Armenise et al.
2015; Sommer and Royle 2020; Frank, Rademacher et al.
2022). The presence of these telomere-related structures has
been shown to create obstacles for the replication machin-
ery. They may act as prevalent fragile sites across the
genome, promoting chromosomal rearrangements and con-
tributing to genomic instability in tumor cells exhibiting
ALT (Sfeir, Kosiyatrakul et al. 2009; Bosco and de Lange
2012). The prior identification of the depletion of NR2C/F
class nuclear receptors and NuRD-ZNF827 has been shown
to inhibit the phenotypic characteristics associated with
ALT (Conomos, Stutz et al. 2012; Conomos, Reddel et al.
2014). ALT relies on the activity of BLM helicase, which is
responsible for resolving these intermediates (Jiang, Zhang
et al. 2024). The prognostic implications of ALT activity in
human cancers are frequently characterized by inconsis-
tency and complexity. Prior research has indicated that can-
cers exhibiting ALT are typically associated with unfavorable
prognoses, primarily due to the chromosomal instability
inherent in these tumors, which may lead to resistance to
treatment (Lawlor, Veronese et al. 2019; Recagni, Bidzinska
et al. 2020). As a result, individuals with ALT-positive
tumors often necessitate targeted therapeutic approaches.
Conversely, it has also been observed that certain categories
of ALT-positive tumors can correlate with improved prog-
nostic outcomes (Sung, Lim et al. 2020). TERRA IncRNA
has been shown to play a significant role in the regulation of
telomere dynamics by inhibiting the ribonucleoprotein
hnRNPA1 from displacing replication protein A (RPA), a
protein that binds to single-stranded DNA, at telomeres dur-
ing the S-phase of the cell cycle (Flynn, Centore et al. 2011;
Oo, Palfi et al. 2022; Xu, Senanayaka et al. 2024). Notably,
the levels of TERRA IncRNA decrease during the G2 phase,
which allows RPA to interact with POT]1, a protein that spe-
cifically recognizes single-stranded telomeric DNA. RPA is
essential as part of the ALT pathway, particularly in ALT
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cells, where its retention is critical for initiating HR that
supports recombination and ALT activity (Oliva-Rico and
Herrera 2017; Dueva and Iliakis 2020; Lalonde and Char-
trand 2020). In ALT-positive tumors, the abnormal persis-
tence of TERRA expression during the G2 phase results in
RPA retention at telomeres, which activates the ataxia telan-
giectasia and Rad-3-related protein (ATR) kinase, a key
player in DNA damage response and checkpoint signaling,
thereby enhancing recombination and ALT activity (Oakley
and Patrick 2010; Liu, Byrne et al. 2023; Agrawal, Lin et al.
2024). Consequently, targeting the ATR signaling pathway
with inhibitors presents a promising therapeutic strategy for
treating cancers characterized by ALT-positive tumors
(Flynn, Cox et al. 2015). Additionally, the heterodimer
Hop2-Mndl has been identified as crucial for meiotic
recombination, as it stimulates RADS51 and Dmcl, pro-
cesses that are also involved in telomere movement and
clustering during ALT recombination (Arnoult and Karl-
seder 2014; Bugreev, Huang et al. 2014; Tsubouchi 2023;
Ngoi, Pili¢ et al. 2024).

TMMs as possible therapeutic targets

The distinction between normal and cancer cells is evident
in their telomere length and telomerase activity, which
has led to the exploration of anti-telomerase therapies and
anti-ALT strategies as potential cancer treatments. These
approaches aim to progressively shorten the telomeres of
cancerous cells, ultimately eliminating both cancer and can-
cer stem cells, while minimizing damage to healthy cells.
This selectivity is attributed to the typically lower telom-
erase activity, absence of the ALT mechanism, and gener-
ally longer telomeres found in normal cells compared to
their malignant counterparts (Reddel 2014). An expanding
body of research has identified various therapeutic strate-
gies centered around telomerase to accomplish this objec-
tive. These strategies encompass antisense oligonucleotides
(ASO), agents that mimic telomere uncapping, modulators
of expression, immunotherapeutic approaches targeting
telomerase, inhibitors of reverse transcriptase, stabilization
of G-quadruplex structures, and gene therapy (Jafri, Ansari
et al. 2016; Trybek, Kowalik et al. 2020; Ali and Walter
2023). Nevertheless, anti-telomerase therapy approaches
are unlikely to demonstrate clinical effectiveness in a sig-
nificant proportion of cancers, specifically those that are
often mesenchymal in origin and rely on ALT mechanisms
for telomere maintenance, which accounts for approxi-
mately 10-15% of such cases. Therefore, it is imperative to
develop ALT-specific targeting strategies to provide thera-
peutic benefits for patients suffering from these tumors,
which typically have a poor prognosis (Zhang, Luo et al.
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2022). Notably, studies have indicated that anti-telomerase
therapies may inadvertently promote the activation of ALT
as a resistance mechanism, while anti-ALT treatments can
trigger the reactivation of telomerase. Consequently, there is
a pressing need for anti-TMM therapy strategies that utilize
selective agents targeting both telomerase and ALT concur-
rently to achieve optimal clinical outcomes (Hu, Hwang et
al. 2012; Dilley and Greenberg 2015). Fig. 2 depicts an over-
view of strategies aimed at targeting TMMs in immortalized
cancer cell lines, and the subsequent sections will provide
an in-depth examination of various anti-TMM techniques.

Anti-telomerase therapy approaches

Oligonucleotides have emerged as potential therapeutic
agents for the inhibition of telomerase through a variety of
mechanisms. These include TERC-targeting oligonucle-
otides like GRN163L (Imetelstat) and miRNAs, in addition
to T-oligonucleotides that are homologous to the 3’-telo-
meric overhang (Schrank, Khan et al. 2018; Eckburg, Dein
et al. 2020). GRN163L characterized as a 13-mer oligonu-
cleotide sequence, functions as a competitive antagonist by
binding to the TERC template region. This binding action
obstructs the recruitment of TERC to telomeric DNA,
thereby preventing it from serving as a template for telo-
meric sequence synthesis and effectively terminating the pri-
mary process of telomerization (Roth, Harley et al. 2010a;
Schrank, Khan et al. 2018; Bruedigam, Porter et al. 2024).

Cancer cell

1-Telomerase reactivation

Telomere

2-Alternative Lengthening of Telomeres (ALT)

3’-overhang
—_—

Telomere

Telomere

DO =~

3’-Overhanging invades telomere of another chromosome

Therapeutic methods:
1. Antisense oligonucleotides

3. Expression modulators

2. Agents that simulate telomere uncapping

Healthy cell

Cell
division

> OO0 @

Shortening telomeres

4. Immunotherapeutic vaccines targeting telomerase

5. Reverse transcriptase inhibitors
Immortal cell

7. Gene therapy approaches

6. Stabilization of G-quadruplex structures

Apaptotic cell

Fig. 2 Schematic illustration of two distinct mechanisms by which telomeres are maintained in cancerous cells, along with the corresponding

therapeutic approaches aimed at targeting these mechanisms
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Although GRN163L demonstrates potential antitumor effi-
cacy, it has been shown to exhibit toxic side effects when
used as monotherapy across various human malignancies
(Thompson, Drissi et al. 2013; Frink, Peyton et al. 2016;
Wang, Hu et al. 2018). Notably, this agent is associated with
significant hematological toxicity, particularly manifesting
as neutropenia and thrombocytopenia, which considerably
restricts its application in clinical practice (Ratain, Kelsey et
al. 2010; Thompson, Drissi et al. 2013; Chiappori, Kolevska
et al. 2015; Salloum, Hummel et al. 2016). It has also been
observed that certain varieties of tumor cells treated with
GRNI163L exhibit signs of accelerated aging and undergo
apoptosis over an extended period (Shammas, Koley et al.
2008; Roth, Harley et al. 2010b; Burchett, Yan et al. 2014).
The application of GRN163L as a viable anti-tumor thera-
peutic agent is hindered by significant adverse effects on
mesenchymal stem cells. These effects encompass notable
changes in cellular morphology, a reduction in adhesion
capabilities, and an interruption of the cell cycle, particu-
larly manifesting as a G1 phase arrest (Joseph, Tressler et
al. 2010; Tokcaer-Keskin, Dikmen et al. 2010; Nitta, Go et
al. 2012; Schrank, Khan et al. 2018) GRN163L has been
reported to exhibit limited efficacy when administered as a
monotherapy for tumor cells, alongside significant adverse
effects on both hematopoietic and mesenchymal stem cells.
However, promising outcomes have been observed when
GRN163L is utilized in conjunction with other molecularly
targeted therapies or employed to enhance the sensitivity
of tumor cells to radiation treatment (Koziel and Herbert
2015; Burchett, Etekpo et al. 2017; Wu, Zhang et al. 2017,
Hu, Huang et al. 2019). T-oligos, which are analogous to
the 3’-telomeric overhang, represent a novel category of
telomere-targeted therapeutic strategies. These oligonucle-
otides accumulate within the nucleus and are recognized
due to their homology with telomeric sequences. They
compete with conventional telomeric DNA, resulting in the
disruption of the typical telomere architecture through the
action of distinct shelterin complex proteins. Furthermore,
T-oligos activate the ataxia telangiectasia mutated (ATM)
signaling pathway and induce cytotoxic effects by expos-
ing the telomere overhang. This exposure subsequently
triggers cellular responses to DNA damage and initiates the
DNA damage response (DDR) mechanism (Crees, Girard
et al. 2014; Chhabra, Wojdyla et al. 2018; Schrank, Khan
et al. 2018; Eckburg, Dein et al. 2020). The introduction of
T-oligos into clinical trials faces certain challenges, primar-
ily due to their susceptibility to nuclease-mediated degrada-
tion and a lack of comprehensive understanding regarding
their mechanisms of action. Nevertheless, T-oligos have
exhibited significant anti-tumor effects when utilized in
combination therapy approaches, as well as enhancing the
sensitivity of cancer cells to radiation treatment (Sarkar and
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Faller 2011; Pitman, Wojdyla et al. 2013; Wojdyla, Stone et
al. 2014).

The third category of oligonucleotide-based therapies
includes exogenous small interfering RNAs (siRNAs) and
endogenous miRNAs that act as tumor suppressors. These
molecules play a crucial role in inhibiting cellular processes
such as proliferation, migration, invasion, and metastasis by
regulating the expression of hTERT at the post-transcrip-
tional level. This regulation is achieved through their inter-
action with the RNA-induced silencing complex (RISC),
which effectively silences target genes (Zhang, Xiao et al.
2015; Zhou, Fei et al. 2016; Guzman, Sanders et al. 2018;
Zhang, Chen et al. 2023). However, oncogenic miRNAs,
including miR-21, have been shown to facilitate the trans-
formation of tumor cells by enhancing the expression of
TERT. This mechanism presents potential targets for anti-
oncogenic miRNA antisense therapy, which aims to inhibit
their function (Yang et al. 2015; Nguyen and Chang 2017;
Rhim, Baek et al. 2022). In addition to TERT, the TERC
gene and its corresponding mRNA are also susceptible
to modulation by both oncogenic and tumor-suppressive
miRNA therapies (Eckburg, Dein et al. 2020). Moreover,
studies have revealed that miRNAs can affect TERT expres-
sion by altering upstream signaling pathways, thereby offer-
ing additional avenues for therapeutic intervention (Wang,
Sun et al. 2012; Ohira, Naohiro et al. 2015; Farooqi, Man-
soor et al. 2018; Eckburg, Dein et al. 2020). Short hairpin
RNA (shRNA) can be introduced into the nucleus through
an expression vector, leading to sustained expression and
more prolonged gene silencing compared to siRNA. A sig-
nificant challenge associated with siRNA-based therapeutic
approaches is their limited biological stability and tran-
sient silencing capability, as approximately 99% of duplex
siRNAs are degraded within 48 h post-delivery into cells
(Hu, Zhong et al. 2020). Research has shown that plasmid-
based delivery systems for shRNA targeting either TERT or
TERC can effectively reduce telomere length and inhibit the
growth of cancer cells (Chen, Gu et al. 2017).

Anti-telomerase immunotherapy is another therapeutic
approach mediated by immune cells. Vaccines that target
telomerase can enhance the sensitivity and activation of
CD8* and CD4" T lymphocytes against cancer cells that
present TERT peptides as surface antigens via human leu-
kocyte antigen (HLA) classes I and II. This process ulti-
mately results in the generation of telomerase-specific
cytotoxic T lymphocytes (CTLs), which are instrumental in
the destruction of TERT-positive malignant cells (Mizuko-
shi and Kaneko 2019; Berei, Eckburg et al. 2020; Elling-
sen, Mangsbo et al. 2021; Yan, Lin et al. 2023). Numerous
TERT-targeted peptide vaccines have been developed to
date, with GV1001 being the most advanced among them.
This particular vaccine has shown remarkable efficacy and
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importance while maintaining a favorable safety profile,
particularly in terms of its impact on bone marrow func-
tion (Mizukoshi and Kaneko 2019; Jo, Kim et al. 2024).
The peptide vaccine GV1001 is characterized as an HLA-
II-restricted peptide, which elicits robust responses from
both CD4" and CD8" T cells, as well as the activation of
CTLs across various types of malignancies (Staff, Mozaffari
et al. 2014; Kim, Cho et al. 2022; Kim, Kim et al. 2022b).
TERT-based peptide vaccines have been shown to pro-
voke significant immune responses in T-type cells, notably
including GX301 and Vx-001 (UV1). The GX301vaccine
comprises four peptides derived from TERT and is classi-
fied as a multi-peptide vaccine, exhibiting greater efficacy
compared to single-peptide alternatives (Fenoglio, Traverso
et al. 2013; Fenoglio, Parodi et al. 2015; Kailashiya, Sharma
et al. 2017; Dosset, Castro et al. 2020; Negrini, De Palma
et al. 2020). Notably, these vaccines elicit distinct immune
responses that vary according to the type of tumor. For
instance, GV1001 has demonstrated superior effectiveness
in treating pancreatic cancer, non-small cell lung carcinoma
(NSCLC), and melanoma, while GX301 has shown marked
efficacy in prostate and kidney cancers. Additionally, UV1
has proven to be particularly effective in both prostate can-
cer and NSCLC (Kailashiya, Sharma et al. 2017; Bajaj,
Kumar et al. 2020; Negrini, De Palma et al. 2020; Relitti,
Saraswati et al. 2020; Ellingsen, Mangsbo et al. 2021). In
recent developments, DNA vaccines have emerged along-
side peptide vaccines, which are designed to elicit immune
responses in T cells through the introduction of the TERT
gene sequence or a plasmid that encodes the TERT peptide
into antigen-presenting cells (APCs). Notably, the two vac-
cines belonging to this category are phTERT and INVAC-1
(Yan, Pankhong et al. 2013; Thalmensi, Pliquet et al. 2016;
Melssen and Slingluff 2017; Negrini, De Palma et al. 2020).
Additionally, immunotherapy also employs dendritic cells
(DCs), which are recognized as the most potent APCs, to
stimulate immune responses. A notable example of a DC-
based cancer vaccine is GRNVACI, which elicits a robust
polyclonal immune response that has demonstrated effi-
cacy, safety, and tolerability across a range of cancer types
(DiPersio, Collins Jr et al. 2009; Khoury, Collins Jr et al.
2010; Relitti, Saraswati et al. 2020; Yu, Sun et al. 2022).
Another innovative DC-based vaccine involves the trans-
fection of TERT mRNA, enabling the presentation of TERT-
associated antigens to T cells; this approach is referred to as
the TAPCells vaccine (Salazar-Onfray, Pereda et al. 2013;
Galati and Zanotta 2018; Zhang, Tang et al. 2023).

The enzyme reverse transcriptase has been found to
exhibit activity in a significant number of tumor cells, as
well as in cells that are infected with retroviruses. Conse-
quently, inhibitors targeting this enzyme may play a vital
role in the therapeutic management of both neoplastic cells

and virally infected cells. In prior research, various nucleo-
side analogs have been recognized as effective inhibitors
and antagonists of telomerase, demonstrating irreversible
inhibition. Notable examples of these compounds include
azidothymidine (AZT), acyclovir, and penciclovir, all of
which have shown to be instrumental in cancer therapy, par-
ticularly when utilized in combination treatments (Gomez,
Armando et al. 2016; Fang, Hu et al. 2017; Wang, Zhou
et al. 2017). A distinct category of reverse transcriptase
inhibitors, referred to as small molecule inhibitors, includes
compounds like BIBR1532 acid, which exert their effects
by non-competitively binding to the active site of TERT,
thereby specifically inhibiting the activity of telomerase
(Altamura, Degli Uberti et al. 2020). One approach to indi-
rectly suppress telomerase activity involves the stabiliza-
tion of G-quadruplex structures, which effectively prevents
the single-stranded telomere overhang from unfolding and
being detected by TERC. Among the various compounds
studied for their ability to bind to and stabilize G-qua-
druplexes in the context of cancer therapy, Telomestatin,
BRACO-1910, and RHPS4 have garnered significant atten-
tion (Bryan 2020; El-Khoury et al. 2023). In addition, novel
steroid derivatives, specifically malouetine, and steroid FG
have been identified as effective stabilizers of G-quadru-
plexes, as well as inducers of telomere uncapping. These
compounds exhibit a nonplanar and nonaromatic configu-
ration, distinguishing them from previously characterized
G-quadruplex ligands (Xu, Di Antonio et al. 2017; Eitsuka,
Nakagawa et al. 2018; Awadasseid, Ma et al. 2021; Zegers,
Peters et al. 2023).

The ultimate strategy involving telomere-based thera-
pies pertains to the anticancer potential of gene therapy,
wherein the TERT gene, typically a supportive element in
approximately 85% of cancer cells that demonstrate TERT
overexpression, is transformed into a detrimental adversary
through the activation of gene expression driven by the
TERT promoter (Hong and Yun 2019). The human TERT
promoter presents a noteworthy advancement in cancer
gene therapy, as it demonstrates the ability to target a wide
range of malignancies, unlike many earlier cancer-specific
promoters that were limited to selectively addressing only
a narrow spectrum of cancers in a tissue-specific context.
This broad applicability of the TERT promoter in therapeu-
tic applications holds significant promise for the develop-
ment of gene therapies that can effectively engage with the
majority of cancer types (Quazi 2022). The limited expres-
sion of transgenes driven by the human TERT promoter
in normal somatic cells and bone marrow progenitor cells
results in negligible acute and chronic toxicity. A prevalent
approach in TERT promoter-driven gene therapy involves
the expression of therapeutic genes, which may encom-
pass anticancer transgenes, miRNAs, or components of the
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CRISPR/Cas9 system (Li, Tan et al. 2011; Watanabe, Ueki
et al. 2011; Xiong, Sun et al. 2012; Higashi, Hazama et al.
2014; Liu et al. 2016; Huang, Zhuang et al. 2017; Hong and
Yun 2019; Balon, Sheriff et al. 2022). The forefront of anti-
cancer gene therapy has been marked by the innovative use
of transgenes that facilitate the direct elimination of cancer
cells. This approach includes the delivery of suicide genes,
which encode enzymes responsible for converting prodrugs
into active therapeutic agents, through adenovirus-medi-
ated systems (Zeng, Zhang et al. 2024). Additionally, the
incorporation of proapoptotic genes has also been explored
as a means to induce programmed cell death in malignant
cells (Rubis, Holysz et al. 2013). The utilization of TERT
promoter-driven and CRISPR/Cas9-based genetic circuits
presents a novel strategy for the targeted silencing of spe-
cific oncogenes in various cancer types. A notable instance
of this therapeutic methodology involved a lentiviral deliv-
ery system designed to express a guide RNA targeting
HRAS, alongside a human TERT promoter-driven GAL4
and UAS-activated Cas9 nuclease (referred to as HRAS-
LV). This system demonstrated a significant enhancement
in the silencing of HRAS in bladder cancer-derived cell
lines (Huang, Zhuang et al. 2017). Moreover, the human
TERT promoter can produce oncolytic adenoviruses that
are specific to cancer by enhancing the expression of critical
replicative genes, including the E1A gene (Zhou, Ma et al.
2021). The predominant optimization within this therapeutic
framework involved the creation of various modified forms
of human TERT (mTERT) that facilitate the replication of
oncolytic adenoviruses. This was achieved by incorporating
additional binding sites for oncogenic transcription factors,
such as Spl and c-Myec, located upstream of the promoter
region. Furthermore, a hybrid cancer-specific promoter was
engineered by merging the promoters of E2F and mTERT,
supplemented with multiple hypoxia response elements
(HRE), resulting in two unique hypoxia-responsive and
cancer-specific promoters, designated as HEmT and HmTE.
Additionally, an advanced hybrid cancer-specific mTERT
promoter was developed by integrating six copies of HRE
and five copies of c-Myc binding sites upstream of mTERT,
culminating in the formation of HSCmTERT (Kim, Kim et
al. 2003; Li, Hong et al. 2018; Oh, Hong et al. 2018). The
mTERT promoters have been identified as effective enhanc-
ers of transgene expression levels. As a result, oncolytic
adenoviruses that utilize mTERT promoter-driven repli-
cation exhibit enhanced potency and prolonged antitumor
effects. Furthermore, the CRISPR/Cas9 technology presents
a viable approach for rectifying prevalent mutations in the
human TERT promoter, thereby paving the way for person-
alized therapeutic strategies. A notable example includes
a C>T single-nucleotide mutation found in the proximal
promoter region of TERT, which is frequently observed in
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various cancers at positions — 124 and — 146, adjacent to the
ATG codon of TERT. This mutation is associated with an
increase in the transcriptional activity of the altered TERT
promoters (Liu, Yuan et al. 2016; Balon, Sheriff et al. 2022)
The application of CRISPR/Cas9 to correct these mutations
has yielded significant outcomes in urothelial cancer cell
lines (Xi, Schmidt et al. 2015).

ALT-specific targeting strategies

Numerous studies have established that therapies targeting
telomerase are unlikely to demonstrate clinical effectiveness
in cancers characterized by ALT (Temime-Smaali, Guittat et
al. 2009; Wu, Chen et al. 2019; Awadasseid, Ma et al. 2021).
Thus, effective treatment strategies for patients with tumors
that exhibit ALT must be specifically designed to target this
mechanism, particularly given the often poor prognoses
associated with such tumors. It has been suggested that ther-
apies based on telomerase, including telomerase inhibitors,
may prompt tumor cells to adopt ALT as a means of resis-
tance. Consequently, the use of ALT inhibitors in conjunc-
tion with telomerase inhibitors could be beneficial for both
telomerase-positive tumors and those that are initially ALT-
positive. However, it is important to note that telomerase
reactivation can be a resistance strategy in tumors undergo-
ing treatment with ALT inhibitors. Therefore, it is essential
to prescribe both telomerase and ALT inhibitors, regard-
less of the TMM employed by the tumor (Gao and Pickett
2022). Notably, ALT cells typically possess significantly
shorter telomeres compared to telomerase-positive cells,
and the complete disruption of the ALT mechanism can lead
to severe telomere uncapping, which in turn triggers a cas-
cade of detrimental effects, including damage signals, toxic
chromosomal fusions, cellular senescence, apoptosis, and
increased genomic instability, ultimately resulting in cell
death (Kaul, Cesare et al. 2011; Ali and Walter 2023) Recent
studies have identified key characteristics of ALT cells, high-
lighting alterations in the chromatin landscape surrounding
telomeres, the upregulation of TERRA IncRNA, enhanced
activation of the ATR signaling pathway, increased interac-
tions with nuclear receptors, telomere repositioning driven
by HR, and recombination events occurring between non-
sister chromatids. These identified features present signifi-
cant potential for the development of therapies targeting
ALT mechanisms (Sohn, Goralsky et al. 2023). In particu-
lar, the inhibition of ATR emerges as a promising strategy
for treating cancers that exhibit a high frequency of ALT, as
it is believed to enhance the sensitivity of ALT-dependent
cells to therapeutic interventions (Episkopou, Draskovic et
al. 2014). As mentioned earlier, APBs have been recognized
as pivotal elements in the formation of structural platforms
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and the mediation of telomere recombination within ALT
cells (Draskovic, Arnoult et al. 2009; Marchesini et al.
2016; Zhang, Zhao et al. 2020; Zhang, Genois et al. 2021).
The overexpression of Spl100, a constituent of PML bod-
ies, has been shown to interfere with APBs, leading to the
sequestration of the Mrell1-Rad50-Nbs1 (MRN) complex,
which ultimately results in the suppression of ALT activ-
ity (Jiang, Zhong et al. 2005; Deeg, Chung et al. 2016).
Notably, the inhibition of MRN complex formation or the
depletion of its components also contributes to the reduc-
tion of ALT activity (Kavitha et al. 2010; Lamarche, Orazio
et al. 2010; Bian, Meng et al. 2019). Given that ALT can be
viewed as a distinct and aberrant variant of HR, targeting
this HR pathway prevalent in ALT cells may offer a stra-
tegic approach to selectively eliminate these cells (Dilley
and Greenberg 2015). Additionally, inhibitors of PCNA and
BLM have shown potential as effective therapeutic agents
against ALT tumor cells (Punchihewa, Inoue et al. 2012;
Nguyen, Dexheimer et al. 2013; Pan, Drosopoulos et al.
2017). It has been emphasized that therapeutic strategies
aimed at either diminishing or excessively activating ALT
recombination could leverage the inherent vulnerabilities of
ALT-positive tumors, facilitating targeted cell death (Dil-
ley and Greenberg 2015). In conclusion, nearly all meth-
odologies employed for telomerase inhibition apply to
ALT inhibition, encompassing antisense oligonucleotides,
miRNA and siRNA targeting, small molecule therapies, and
a diverse array of gene therapy techniques.

Conclusion

The widespread presence of TMMs and the specific involve-
ment of mechanisms exclusive to cancer cells renders these
pathways attractive targets for therapeutic intervention.
Nevertheless, despite the extensive and expanding knowl-
edge in this domain that has led to numerous strategies for
anti-telomerase and ALT-based cancer treatments, several
uncertainties and contradictions persist. These include the
need for more refined TERT-based therapeutic strategies
and fundamental unresolved questions regarding the ALT
mechanism. Addressing these inquiries not only enhances
our understanding of the biological processes underlying
cancer progression but also paves the way for the develop-
ment of innovative cancer therapies that could offer greater
efficacy and specificity, ultimately curtailing tumor growth
and enhancing patient outcomes.
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